
Package index
-
DM() - Fold change, p value and vip of the data
-
ML_Boruta() - Feature selection using Boruta
-
ML_RF() - Feature selection using random forest
-
ML_alpha() - Feature selection using lasso or elastic network
-
ML_logistic() - Feature selection using logistic regression
-
ML_xgboost() - Feature selection using XGBoost
-
MetCox() - The cox analysis about the metabolites
-
ePDAlyser() - Differential abundance (DA) score
-
ePEAlyser() - KEGG pathway analysis
-
eSEAlyser() - The eSEAlyser
-
keggid2pathway() - The kegg pathway corresponding to kegg id
-
meta_impute() - Impute the NA in data
-
mlimma() - Differential Metabolite analysis by limma
-
mnetapp() - MNet shiny app start function.
-
myscale() - Scale the data
-
name2keggid() - Change the compound name to kegg id
-
name2pathway() - seek the metabolits' pathway
-
name2refmet() - change the compound name to refmet name
-
pCliTS() - The clinical's time series analysis
-
pESEA() - The visualization of ESEA in a pathway
-
pHeatmap() - Heatmap of differential metabolites
-
pNetCor() - The correlation network's extraction
-
pPCA() - Plot the PCA (Principal Component Analysis)
-
pPathview() - the pathview of differential metabolites
-
pVolcano() - Plot the volcano figure
-
pZscore() - Visualization of the z-score plot
-
pathway2pathwayid() - Change the pathway name to pathway id
-
pathwayinfo() - The gene and the metabolite in the pathway
-
sNETlyser() - The subnetwork's extraction
-
survCli() - The survival analysis and visualization
-
survMet() - The metabolites' survival analysis and visualization
-
xEnrichViewer() - Function to view enrichment results
-
xEnricher() - Function to conduct enrichment analysis given the input data and the ontology and its annotation
-
xEnricherYours() - Function to conduct enrichment analysis given YOUR own input data
-
xgr() - pathway analysis and visualization