Skip to contents

All functions

DM()
Fold change, p value and vip of the data
ML_Boruta()
Feature selection using Boruta
ML_RF()
Feature selection using random forest
ML_alpha()
Feature selection using lasso or elastic network
ML_logistic()
Feature selection using logistic regression
ML_xgboost()
Feature selection using XGBoost
MetCox()
The cox analysis about the metabolites
ePDAlyser()
Differential abundance (DA) score
ePEAlyser()
KEGG pathway analysis
eSEAlyser()
The eSEAlyser
keggid2pathway()
The kegg pathway corresponding to kegg id
meta_impute()
Impute the NA in data
mlimma()
Differential Metabolite analysis by limma
mnetapp()
MNet shiny app start function.
myscale()
Scale the data
name2keggid()
Change the compound name to kegg id
name2pathway()
seek the metabolits' pathway
name2refmet()
change the compound name to refmet name
pCliTS()
The clinical's time series analysis
pESEA()
The visualization of ESEA in a pathway
pHeatmap()
Heatmap of differential metabolites
pNetCor()
The correlation network's extraction
pPCA()
Plot the PCA (Principal Component Analysis)
pPathview()
the pathview of differential metabolites
pVolcano()
Plot the volcano figure
pZscore()
Visualization of the z-score plot
pathway2pathwayid()
Change the pathway name to pathway id
pathwayinfo()
The gene and the metabolite in the pathway
sNETlyser()
The subnetwork's extraction
survCli()
The survival analysis and visualization
survMet()
The metabolites' survival analysis and visualization
xEnrichViewer()
Function to view enrichment results
xEnricher()
Function to conduct enrichment analysis given the input data and the ontology and its annotation
xEnricherYours()
Function to conduct enrichment analysis given YOUR own input data
xgr()
pathway analysis and visualization