Package index
-
DM()
- Fold change, p value and vip of the data
-
ML_Boruta()
- Feature selection using Boruta
-
ML_RF()
- Feature selection using random forest
-
ML_alpha()
- Feature selection using lasso or elastic network
-
ML_logistic()
- Feature selection using logistic regression
-
ML_xgboost()
- Feature selection using XGBoost
-
MetCox()
- The cox analysis about the metabolites
-
ePDAlyser()
- Differential abundance (DA) score
-
ePEAlyser()
- KEGG pathway analysis
-
eSEAlyser()
- The eSEAlyser
-
keggid2pathway()
- The kegg pathway corresponding to kegg id
-
meta_impute()
- Impute the NA in data
-
mlimma()
- Differential Metabolite analysis by limma
-
mnetapp()
- MNet shiny app start function.
-
myscale()
- Scale the data
-
name2keggid()
- Change the compound name to kegg id
-
name2pathway()
- seek the metabolits' pathway
-
name2refmet()
- change the compound name to refmet name
-
pCliTS()
- The clinical's time series analysis
-
pESEA()
- The visualization of ESEA in a pathway
-
pHeatmap()
- Heatmap of differential metabolites
-
pNetCor()
- The correlation network's extraction
-
pPCA()
- Plot the PCA (Principal Component Analysis)
-
pPathview()
- the pathview of differential metabolites
-
pVolcano()
- Plot the volcano figure
-
pZscore()
- Visualization of the z-score plot
-
pathway2pathwayid()
- Change the pathway name to pathway id
-
pathwayinfo()
- The gene and the metabolite in the pathway
-
sNETlyser()
- The subnetwork's extraction
-
survCli()
- The survival analysis and visualization
-
survMet()
- The metabolites' survival analysis and visualization
-
xEnrichViewer()
- Function to view enrichment results
-
xEnricher()
- Function to conduct enrichment analysis given the input data and the ontology and its annotation
-
xEnricherYours()
- Function to conduct enrichment analysis given YOUR own input data
-
xgr()
- pathway analysis and visualization