Skip to contents

Differential Information

The case study by Liao et al. (2022) integrated metabolic and transcriptional analysis to reveal elevated pyrimidine metabolism and glutaminolysis in TNBC among 31 breast tumors, and classified them into two clusters. We utilize MNet to identify a set of features whose activities significantly differ between these two clusters. This result will hopefully hint at some specific biological activities that are pathologically altered in tumoral samples.

Subnetwork identified by dnet

Input data must include the “name” column, with “p_value” required and “logFC” optional. If “logFC” exists, it dictates color; otherwise, use blue for metabolites and red for genes.

## meta_dat is the metabolic data of the 31 samples
## gene_dat is the transcriptional data of the 31 samples
## group is the group information of the 31 samples

## mlimma is the function of Differential Metabolite analysis by limma

diff_meta <- mlimma(meta_dat, group)
head(diff_meta)
## # A tibble: 6 × 8
##   logFC AveExpr     t  P.Value    adj.P.Val     B  logP name  
##   <dbl>   <dbl> <dbl>    <dbl>        <dbl> <dbl> <dbl> <chr> 
## 1  2.86    22.6  9.25 1.52e-10 0.0000000332 14.1   7.48 C02045
## 2  2.44    26.2  7.80 6.83e- 9 0.000000748  10.4   6.13 C00267
## 3 -1.82    27.1 -6.80 1.10e- 7 0.00000622    7.64  5.21 C00073
## 4 -3.78    20.9 -6.79 1.14e- 7 0.00000622    7.61  5.21 C05674
## 5 -2.20    21.4 -6.58 2.07e- 7 0.00000907    7.02  5.04 C00255
## 6 -2.37    21.6 -6.45 2.98e- 7 0.0000109     6.66  4.96 C00242
diff_gene <- mlimma(gene_dat, group)
head(diff_gene)
## # A tibble: 6 × 8
##    logFC AveExpr      t  P.Value    adj.P.Val     B  logP name  
##    <dbl>   <dbl>  <dbl>    <dbl>        <dbl> <dbl> <dbl> <chr> 
## 1   6.92   23.1   11.3  1.07e-12 0.0000000190  17.9  7.72 APH1B 
## 2  21.4    23.4   10.6  5.69e-12 0.0000000506  16.4  7.30 GFRA1 
## 3  -5.76   24.4  -10.2  1.67e-11 0.0000000937  15.5  7.03 RFC4  
## 4  10.5    14.8   10.1  2.11e-11 0.0000000937  15.3  7.03 FAM47E
## 5   4.02    5.65   9.83 3.69e-11 0.000000120   14.8  6.92 FAM87B
## 6 -10.8    20.6   -9.79 4.07e-11 0.000000120   14.7  6.92 ORC6
## change the name in diff_meta 'P.Value' to 'p_value'
names(diff_meta)[4]  <- "p_value"

## filter the differential metabolites
diff_metabolite <- diff_meta %>%
  filter(adj.P.Val < 0.01) %>%
  filter(abs(logFC) > 1)

## change the name in diff_gene 'P.Value' to 'p_value'
names(diff_gene)[4] <- "p_value"

## filter the differential expression genes
diff_gene1 <- diff_gene %>%
  filter(adj.P.Val < 0.01) %>%
  filter(abs(logFC) > 1)

# dir.create("result_v0131")
# png("result_v0131/subnetwork_important.png",width = 8, height = 7, units = 'in', res = 200)

## identify the core metabolism-related subnetwork
a <- sNETlyser(diff_meta, diff_gene, nsize = 100)

a
## $node_result
##            name       type  logFC   AveExpr         t      p_value    adj.P.Val
## 1        C00004 metabolite  -2.32 21.727047 -4.043754 3.105194e-04 9.855615e-04
## 2        C00008 metabolite  -1.61 26.915728 -2.558933 1.544157e-02 2.749352e-02
## 3        C00010 metabolite  -6.77 17.135068 -6.060921 9.173483e-07 1.912691e-05
## 4        C00013 metabolite  -2.26 26.993427 -5.547469 4.064386e-06 5.235885e-05
## 5        C00015 metabolite  -2.35 25.255687 -3.450511 1.594418e-03 4.013535e-03
## 6        C00016 metabolite  -0.77 19.350309 -1.675330 1.036357e-01 1.473781e-01
## 7        C00025 metabolite  -1.52 30.828161 -5.098364 1.500590e-05 1.060094e-04
## 8        C00365 metabolite  -4.49 19.519903 -5.795534 1.977561e-06 2.706787e-05
## 9        C02985 metabolite  -3.00 22.074992 -6.328344 4.247004e-07 1.328706e-05
## 10       C00022 metabolite   1.44 24.204231  5.959762 1.228914e-06 2.070247e-05
## 11       C00106 metabolite  -3.11 26.684736 -6.154394 7.005083e-07 1.704570e-05
## 12       C00255 metabolite  -2.20 21.357147 -6.579475 2.070069e-07 9.066904e-06
## 13       C00148 metabolite  -1.40 30.504922 -5.866104 1.611709e-06 2.353096e-05
## 14       C00267 metabolite   2.44 26.228537  7.801170 6.831988e-09 7.481027e-07
## 15       C00073 metabolite  -1.82 27.121139 -6.800424 1.104723e-07 6.216787e-06
## 16       C00242 metabolite  -2.37 21.589952 -6.451754 2.981604e-07 1.088285e-05
## 17       C02291 metabolite  -7.05 19.394642 -6.002475 1.086113e-06 1.982156e-05
## 18       C02045 metabolite   2.86 22.643320  9.246113 1.517272e-10 3.322827e-08
## 19       C18170 metabolite  -1.41 30.500751 -5.916654 1.392209e-06 2.177813e-05
## 20        ABCA8       gene  17.72 21.429976  7.911609 1.354128e-08 1.613957e-06
## 21        ACACB       gene  10.75 26.910121  6.313422 4.516557e-07 1.626968e-05
## 22        ADCY5       gene  10.80 17.439272  6.437534 3.166774e-07 1.271965e-05
## 23          AK7       gene   5.04  9.457650  6.506762 3.524098e-07 1.345902e-05
## 24       ATP2B1       gene   4.47 29.300110  5.578654 3.764011e-06 7.754650e-05
## 25      ATP5F1C       gene  -4.98 35.514591 -6.094144 8.479140e-07 2.565265e-05
## 26        AURKA       gene -10.91 22.465755 -7.947439 4.735183e-09 8.977915e-07
## 27        AURKB       gene -11.36 19.110752 -8.407832 1.384197e-09 5.343902e-07
## 28          BMX       gene   8.87 10.651736  6.995449 7.770982e-08 4.981215e-06
## 29         BUB1       gene -11.71 23.210846 -8.186199 2.494013e-09 6.920496e-07
## 30        BUB1B       gene -10.30 22.881880 -6.346401 4.109495e-07 1.526789e-05
## 31         CDC7       gene  -7.02 22.392840 -7.234139 3.347271e-08 2.817260e-06
## 32         CDK1       gene -11.01 26.430882 -7.396614 2.133124e-08 2.152395e-06
## 33        CDK16       gene  -4.90 33.659519 -7.806509 6.935946e-09 1.080486e-06
## 34         CDK8       gene  -3.66 22.779754 -5.693552 2.697715e-06 6.026254e-05
## 35        CHEK1       gene  -8.41 22.346608 -7.024691 6.008033e-08 4.174576e-06
## 36          CIT       gene  -6.87 22.564460 -6.156151 7.093574e-07 2.273913e-05
## 37         CPS1       gene   7.39 14.277831  5.992796 1.135548e-06 3.141152e-05
## 38        CTPS1       gene  -7.25 27.931682 -6.441867 3.127827e-07 1.268198e-05
## 39        DCLK1       gene  14.01 23.498349  6.533492 2.800217e-07 1.161478e-05
## 40        DTYMK       gene  -3.91 22.038522 -5.835299 1.789736e-06 4.401625e-05
## 41  FPGT-TNNI3K       gene   8.35 12.342927  8.131239 4.696583e-09 8.977915e-07
## 42         GRK3       gene   4.84 27.363790  7.163480 7.235965e-08 4.782652e-06
## 43       HASPIN       gene  -7.20 14.494119 -7.243967 3.257007e-08 2.769621e-06
## 44      MAP3K12       gene   7.54 24.538204  6.106373 8.185818e-07 2.497800e-05
## 45        MASTL       gene  -7.12 25.792464 -9.594579 6.589670e-11 1.376351e-07
## 46         MELK       gene -12.39 21.556778 -7.958982 4.589921e-09 8.977915e-07
## 47         NEK2       gene -11.86 20.658434 -7.053846 5.536721e-08 4.079943e-06
## 48         NEK5       gene   6.98 13.398510  6.675615 1.608072e-07 8.067159e-06
## 49         NME1       gene  -5.39 29.622976 -7.305005 2.749100e-08 2.556087e-06
## 50          PBK       gene  -9.74 19.095824 -5.757435 2.242037e-06 5.189385e-05
## 51         PDK4       gene  19.91 25.564214  8.399442 1.415235e-09 5.347482e-07
## 52       PKMYT1       gene -10.18 20.944080 -7.284947 2.906475e-08 2.666337e-06
## 53         PLK1       gene -10.59 22.624463 -6.746873 1.314085e-07 7.108426e-06
## 54         PLK4       gene  -7.96 21.251613 -6.669639 1.635564e-07 8.158984e-06
## 55         RRM2       gene -10.65 26.406588 -6.726438 1.392349e-07 7.359144e-06
## 56      SLC17A7       gene   6.80  9.548279  7.088822 6.012667e-08 4.174576e-06
## 57      SLC27A1       gene   6.12 24.168456  6.253613 5.361454e-07 1.852414e-05
## 58        SRPK1       gene  -6.23 32.110850 -8.768319 5.384049e-10 3.328580e-07
## 59       STK32B       gene  10.17 15.665397  6.881147 1.523235e-07 7.795716e-06
## 60          TEK       gene  11.94 19.310413  6.680809 1.584555e-07 7.994348e-06
## 61       TGFBR2       gene   9.47 35.070723  7.617670 1.161018e-08 1.509869e-06
## 62          TK1       gene  -9.85 24.293472 -6.584032 2.085826e-07 9.720281e-06
## 63          TK2       gene   4.61 26.796432  7.262399 3.094332e-08 2.707007e-06
## 64          TTK       gene -10.76 20.572338 -7.604942 1.202218e-08 1.514198e-06
## 65      ALDH1A1       gene  14.49 22.024927  5.706844 2.595805e-06 5.805906e-05
## 66        CRYL1       gene   4.60 20.724954  5.517996 4.488220e-06 8.846425e-05
## 67      CYP4F12       gene  10.04 12.190344  6.226939 1.027564e-06 2.981700e-05
## 68        GAPDH       gene  -6.76 50.561018 -5.514507 4.533881e-06 8.897630e-05
## 69         GLDC       gene -14.89 17.466434 -6.837514 1.017142e-07 6.041279e-06
## 70        GLUD1       gene   4.87 33.841440  6.017013 1.058943e-06 3.023436e-05
## 71         GPD1       gene  16.24 19.173724  6.350855 4.057439e-07 1.521514e-05
## 72        GPD1L       gene   6.03 27.548533  6.904397 8.423838e-08 5.286181e-06
## 73         H6PD       gene   5.57 32.217726  7.325256 2.598966e-08 2.442065e-06
## 74     HSD17B10       gene  -4.14 28.572926 -6.104926 8.219978e-07 2.500034e-05
## 75        PDHA1       gene  -3.76 31.935650 -5.765686 2.189113e-06 5.108602e-05
## 76         RDH5       gene   8.56 14.448947  5.989148 1.147564e-06 3.169453e-05
## 77          ME3       gene   5.02 21.964317  6.137682 1.124639e-06 3.137603e-05
## 78         NOS3       gene   5.68 18.890199  5.593991 3.600263e-06 7.469284e-05
## 79          TXN       gene  -4.94 33.816196 -6.696250 1.516682e-07 7.784614e-06
## 80        PNPT1       gene  -4.56 28.953012 -5.529923 4.335548e-06 8.622061e-05
## 81        CPT1A       gene   5.55 29.734599  6.104347 8.233680e-07 2.500034e-05
## 82         YOD1       gene  -5.81 25.782081 -5.977330 1.187367e-06 3.264156e-05
## 83      ZDHHC24       gene   4.07 21.947734  5.812928 1.909381e-06 4.600908e-05
## 84        HPRT1       gene  -4.73 26.038333 -5.533988 4.284716e-06 8.549694e-05
## 85         NPR1       gene   9.96 20.181792  7.180314 3.888535e-08 3.110653e-06
## 86        PDSS1       gene  -6.37 18.246207 -7.266648 3.058015e-08 2.700543e-06
## 87         POLE       gene  -3.14 30.147049 -6.022212 1.043187e-06 3.010673e-05
## 88         POLK       gene   2.87 26.124109  6.086482 8.668279e-07 2.600337e-05
## 89         POLN       gene   7.10 11.987359  6.210572 6.066559e-07 2.010403e-05
## 90         POLQ       gene  -9.85 20.506744 -8.436628 1.282846e-09 5.177740e-07
## 91         FMOD       gene  15.43 28.243500  7.096981 4.907142e-08 3.708338e-06
## 92      GALNT15       gene  12.32 18.290691  6.678378 2.613687e-07 1.120036e-05
## 93          OGN       gene  18.20 22.806139  7.790483 9.023024e-09 1.281919e-06
## 94        PDIA4       gene  -5.68 36.460830 -6.931848 7.797611e-08 4.981215e-06
## 95        PLOD3       gene  -4.43 29.982526 -5.874824 1.596457e-06 4.021487e-05
## 96       ACADSB       gene   7.89 28.574986  6.149912 7.221998e-07 2.306753e-05
## 97         AOX1       gene  14.53 18.984377  8.620853 1.032967e-09 4.703708e-07
## 98         CAV1       gene   9.26 32.804468  6.946964 7.473100e-08 4.915363e-06
## 99         MAOA       gene  12.46 20.677373  7.184017 3.848607e-08 3.101698e-06
## 100     NOSTRIN       gene  10.62 19.919745  7.268492 3.042382e-08 2.700543e-06
## 101   EEF1AKMT4       gene  -7.15 17.236700 -7.610448 1.184217e-08 1.512986e-06
## 102     ETFBKMT       gene   4.95 17.269675  6.043198 9.819487e-07 2.872887e-05
## 103        TRMO       gene   3.29 20.426508  6.557063 2.252186e-07 1.017724e-05
## 104        GPT2       gene  -8.56 28.350456 -5.995227 1.127614e-06 3.138760e-05
## 105        ABAT       gene  10.38 21.786314  5.951486 1.279323e-06 3.431949e-05
## 106         GGH       gene  -8.08 24.429955 -6.676473 1.604163e-07 8.067159e-06
## 107     NAALAD2       gene   9.17 13.369770  7.240810 3.285726e-08 2.778629e-06
## 108       PSAT1       gene -11.58 22.681462 -7.655738 1.046140e-08 1.429108e-06
## 109      SLC7A5       gene -10.07 30.536982 -5.806475 1.945362e-06 4.658300e-05
## 110         CBS       gene -12.49 19.845748 -5.793222 2.021413e-06 4.799235e-05
##              B      logP  colors
## 1   -0.1284396 3.0063163 #8F8FCE
## 2   -3.8094665 1.5607697 #8F8FCE
## 3    5.5544799 4.7183551 #0000FF
## 4    4.0931288 4.2810099 #8F8FCE
## 5   -1.6936270 2.3964730 #8F8FCE
## 6   -5.4722678 0.8315672 #BEBEBE
## 7    2.8143804 3.9746554 #8F8FCE
## 8    4.7999437 4.5675459 #3030EF
## 9    6.3116406 4.8765713 #5F5FDF
## 10   5.2671639 4.6839779 #CECE8F
## 11   5.8195612 4.7683851 #5F5FDF
## 12   7.0186328 5.0425410 #8F8FCE
## 13   5.0008122 4.6283604 #BEBEBE
## 14  10.3759397 6.1260388 #CECE8F
## 15   7.6366728 5.2064340 #8F8FCE
## 16   6.6596209 4.9632572 #8F8FCE
## 17   5.3885292 4.7028621 #0000FF
## 18  14.1148491 7.4784923 #DFDF5F
## 19   5.1446045 4.6619794 #BEBEBE
## 20   9.4064440 5.7921081 #FF0000
## 21   6.3180451 4.7886209 #DF5F5F
## 22   6.6453036 4.8955247 #DF5F5F
## 23   6.5336480 4.8709865 #CE8F8F
## 24   4.3575662 4.1104378 #CE8F8F
## 25   5.7366528 4.5908678 #8FCE8F
## 26  10.4851053 6.0468245 #5FDF5F
## 27  11.5936062 6.2721416 #5FDF5F
## 28   7.9249493 5.3026647 #DF5F5F
## 29  11.0639486 6.1598628 #5FDF5F
## 30   6.4051392 4.8162209 #5FDF5F
## 31   8.7071806 5.5501731 #8FCE8F
## 32   9.1182958 5.6670780 #5FDF5F
## 33  10.1395031 5.9663807 #8FCE8F
## 34   4.6660836 4.2199526 #BEBEBE
## 35   8.1722065 5.3793876 #5FDF5F
## 36   5.9014425 4.6432262 #8FCE8F
## 37   5.4667196 4.5029110 #CE8F8F
## 38   6.6567039 4.8968129 #8FCE8F
## 39   6.7527009 4.9349889 #EF3030
## 40   5.0459289 4.3563869 #BEBEBE
## 41  10.4318173 6.0468245 #DF5F5F
## 42   7.9516134 5.3203312 #CE8F8F
## 43   8.7321481 5.5575797 #8FCE8F
## 44   5.7691751 4.6024424 #CE8F8F
## 45  14.2998757 6.8612709 #8FCE8F
## 46  10.5132846 6.0468245 #30EF30
## 47   8.2470016 5.3893459 #5FDF5F
## 48   7.2689283 5.0932794 #CE8F8F
## 49   8.8869226 5.5924244 #8FCE8F
## 50   4.8373894 4.2848841 #5FDF5F
## 51  11.5736912 6.2718507 #FF0000
## 52   8.8361150 5.5740850 #5FDF5F
## 53   7.4544376 5.1482266 #5FDF5F
## 54   7.2533459 5.0883639 #8FCE8F
## 55   7.4012950 5.1331727 #5FDF5F
## 56   8.1587543 5.3793876 #CE8F8F
## 57   6.1598543 4.7322620 #CE8F8F
## 58  12.4389931 6.4777410 #8FCE8F
## 59   7.2806506 5.1081440 #DF5F5F
## 60   7.2824695 5.0972170 #DF5F5F
## 61   9.6719418 5.8210607 #DF5F5F
## 62   7.0297155 5.0123212 #5FDF5F
## 63   8.7789365 5.5675107 #CE8F8F
## 64   9.6402482 5.8198173 #5FDF5F
## 65   4.7017421 4.2361300 #EF3030
## 66   4.1945145 4.0532322 #CE8F8F
## 67   5.5367471 4.5255360 #DF5F5F
## 68   4.1851343 4.0507257 #8FCE8F
## 69   7.6895939 5.2188711 #30EF30
## 70   5.5312821 4.5194992 #CE8F8F
## 71   6.4168928 4.8177241 #FF0000
## 72   7.8625171 5.2768579 #CE8F8F
## 73   8.9381665 5.6122428 #CE8F8F
## 74   5.7653283 4.6020541 #8FCE8F
## 75   4.8595030 4.2916979 #BEBEBE
## 76   5.4569887 4.4990156 #DF5F5F
## 77   5.4656404 4.5034020 #CE8F8F
## 78   4.3987731 4.1267210 #CE8F8F
## 79   7.3227038 5.1087629 #8FCE8F
## 80   4.2265846 4.0643889 #8FCE8F
## 81   5.7637897 4.6020541 #CE8F8F
## 82   5.4254657 4.4862291 #8FCE8F
## 83   4.9860454 4.3371565 #CE8F8F
## 84   4.2375132 4.0680494 #8FCE8F
## 85   8.5702288 5.5071485 #DF5F5F
## 86   8.7897157 5.5685489 #8FCE8F
## 87   5.5451378 4.5213364 #BEBEBE
## 88   5.7162718 4.5849703 #BEBEBE
## 89   6.0458297 4.6967168 #CE8F8F
## 90  11.6618718 6.2858598 #5FDF5F
## 91   8.3574706 5.4308207 #EF3030
## 92   6.7922162 4.9507682 #EF3030
## 93   9.8780484 5.8921394 #FF0000
## 94   7.9333387 5.3026647 #8FCE8F
## 95   5.1516663 4.3956134 #8FCE8F
## 96   5.8848743 4.6369989 #CE8F8F
## 97  11.8192399 6.3275597 #EF3030
## 98   7.9723006 5.3084444 #DF5F5F
## 99   8.5796621 5.5084004 #EF3030
## 100  8.7943953 5.5685489 #DF5F5F
## 101  9.6539608 5.8201650 #8FCE8F
## 102  5.6010497 4.5416814 #CE8F8F
## 103  6.9591088 4.9923699 #BEBEBE
## 104  5.4732016 4.5032419 #5FDF5F
## 105  5.3564951 4.4644592 #DF5F5F
## 106  7.2711649 5.0932794 #5FDF5F
## 107  8.7241302 5.5561694 #DF5F5F
## 108  9.7666045 5.8449349 #5FDF5F
## 109  4.9687674 4.3317725 #5FDF5F
## 110  4.9332749 4.3188280 #30EF30
## 
## $edge_result
##         X1          X2
## 1   C00004      C00008
## 2   C00004      C00010
## 3   C00008      C00010
## 4   C00008      C00013
## 5   C00010      C00013
## 6   C00008      C00015
## 7   C00004      C00016
## 8   C00010      C00016
## 9   C00013      C00016
## 10  C00004      C00025
## 11  C00008      C00025
## 12  C00010      C00025
## 13  C00013      C00025
## 14  C00008      C00365
## 15  C00013      C02985
## 16  C00004      C00022
## 17  C00008      C00022
## 18  C00010      C00022
## 19  C00013      C00022
## 20  C00015      C00022
## 21  C00016      C00022
## 22  C00025      C00022
## 23  C00013      C00106
## 24  C00016      C00106
## 25  C00008      C00255
## 26  C00016      C00255
## 27  C00004      C00148
## 28  C00008      C00148
## 29  C00013      C00148
## 30  C00025      C00148
## 31  C00008      C00267
## 32  C00015      C00267
## 33  C00008      C00073
## 34  C00010      C00073
## 35  C00013      C00073
## 36  C00025      C00073
## 37  C00022      C00073
## 38  C00148      C00073
## 39  C00013      C00242
## 40  C00022      C02291
## 41  C00008      C02045
## 42  C00016      C18170
## 43  C00008       ABCA8
## 44  C00008       ACACB
## 45  C00013       ACACB
## 46  C00013       ADCY5
## 47  C00008         AK7
## 48  C00008      ATP2B1
## 49  C00008     ATP5F1C
## 50  C00008       AURKA
## 51  C00008       AURKB
## 52  C00008         BMX
## 53  C00008        BUB1
## 54  C00008       BUB1B
## 55  C00008        CDC7
## 56  C00008        CDK1
## 57  C00008       CDK16
## 58  C00008        CDK8
## 59  C00008       CHEK1
## 60  C00008         CIT
## 61  C00008        CPS1
## 62  C00008       CTPS1
## 63  C00025       CTPS1
## 64  C00008       DCLK1
## 65  C00008       DTYMK
## 66  C00365       DTYMK
## 67  C00008 FPGT-TNNI3K
## 68  C00008        GRK3
## 69  C00008      HASPIN
## 70  C00008     MAP3K12
## 71  C00008       MASTL
## 72  C00008        MELK
## 73  C00008        NEK2
## 74  C00008        NEK5
## 75  C00008        NME1
## 76  C00015        NME1
## 77  C00008         PBK
## 78  C00008        PDK4
## 79  C00016        PDK4
## 80  C00008      PKMYT1
## 81  C00008        PLK1
## 82  C00008        PLK4
## 83  C00008        RRM2
## 84  C00015        RRM2
## 85  C00008     SLC17A7
## 86  C00025     SLC17A7
## 87  C00008     SLC27A1
## 88  C00010     SLC27A1
## 89  C00013     SLC27A1
## 90  C00008       SRPK1
## 91  C00008      STK32B
## 92  C00008         TEK
## 93  C00008      TGFBR2
## 94  C00008         TK1
## 95  C00365         TK1
## 96  C00008         TK2
## 97  C00365         TK2
## 98  C00008         TTK
## 99  C00004     ALDH1A1
## 100 C00004       CRYL1
## 101 C00004     CYP4F12
## 102 C00004       GAPDH
## 103 C00004        GLDC
## 104 C00004       GLUD1
## 105 C00025       GLUD1
## 106 C00004        GPD1
## 107 C00004       GPD1L
## 108 C00004        H6PD
## 109 C00004    HSD17B10
## 110 C00010    HSD17B10
## 111 C00016    HSD17B10
## 112 C00004       PDHA1
## 113 C00010       PDHA1
## 114 C00016       PDHA1
## 115 C00022       PDHA1
## 116 C00004        RDH5
## 117 C00022         ME3
## 118 C00016        NOS3
## 119 C00008         TXN
## 120 C00016         TXN
## 121 C00073         TXN
## 122 C00008       PNPT1
## 123 C00015       PNPT1
## 124 C00010       CPT1A
## 125 C00010        YOD1
## 126 C00010     ZDHHC24
## 127 C00013       HPRT1
## 128 C00242       HPRT1
## 129 C00013        NPR1
## 130 C00013       PDSS1
## 131 C00013        POLE
## 132 C00013        POLK
## 133 C00013        POLN
## 134 C00013        POLQ
## 135 C00015        FMOD
## 136 C00015     GALNT15
## 137 C00015         OGN
## 138 C00015       PDIA4
## 139 C00015       PLOD3
## 140 C00016      ACADSB
## 141 C00016        AOX1
## 142 C00016        CAV1
## 143 C00016        MAOA
## 144 C00016     NOSTRIN
## 145 C00073   EEF1AKMT4
## 146 C00073     ETFBKMT
## 147 C00073        TRMO
## 148 C00025        GPT2
## 149 C00022        GPT2
## 150 C00025        ABAT
## 151 C00025         GGH
## 152 C00025     NAALAD2
## 153 C00025       PSAT1
## 154 C00148      SLC7A5
## 155 C00073      SLC7A5
## 156 C02291         CBS
# dev.off()

# write.table(
#   a$node_result,
#   "result_v0131/subnetwork_important_node.txt",
#   quote = F,
#   row.names = F,
#   sep = "\t"
# )
# write.table(
#   a$edge_result,
#   "result_v0131/subnetwork_important_edge.txt",
#   quote = F,
#   row.names = F,
#   sep = "\t"
# )

Subnetwork extraction of interested metabolites and genes

Input data requires the “name” column but excludes the “p_value” column.

# png("result_v0131/subnetwork_interested.png",width = 8, height = 7, units = 'in', res = 200)

## get 500 differential expression gene
a <- sNETlyser(diff_metabolite[, 8], diff_gene1[1:500, 8])

a
##         X1            X2
## 1   C00010        C00004
## 2   C00020        C00004
## 3   C00022        C00004
## 4   C00025        C00004
## 5   C00029        C00004
## 6   C00051        C00004
## 7   C00062        C00004
## 8   C00093        C00004
## 9   C00097        C00004
## 10  C00148        C00004
## 11  C00149        C00004
## 12  C00167        C00004
## 13  C00186        C00004
## 14  C00385        C00004
## 15  C00429        C00004
## 16  C00800        C00004
## 17  C05581        C00004
## 18  C00010        C00013
## 19  C00010        C00019
## 20  C00010        C00020
## 21  C00010        C00025
## 22  C00010        C00035
## 23  C00010        C00047
## 24  C00010        C00051
## 25  C00010        C00073
## 26  C00010        C00093
## 27  C00010        C00097
## 28  C00010        C00111
## 29  C00010        C00245
## 30  C00010        C00352
## 31  C00010        C00407
## 32  C00013        C00042
## 33  C00013        C00073
## 34  C00097        C00013
## 35  C00013        C00106
## 36  C00013        C00153
## 37  C00013        C00242
## 38  C00013        C00245
## 39  C00013        C00295
## 40  C00385        C00013
## 41  C00429        C00013
## 42  C00013        C00588
## 43  C00013        C02985
## 44  C00013        C05378
## 45  C00029        C00015
## 46  C00043        C00015
## 47  C00055        C00015
## 48  C00105        C00015
## 49  C00167        C00015
## 50  C00190        C00015
## 51  C05382        C00015
## 52  C00013        C00019
## 53  C00020        C00019
## 54  C00051        C00019
## 55  C00019        C00073
## 56  C00167        C00019
## 57  C00019        C00170
## 58  C00019        C00300
## 59  C00019        C00588
## 60  C00019        C00788
## 61  C00019        C01210
## 62  C00019        C05660
## 63  C00019        C13482
## 64  C00020        C00013
## 65  C00020        C00015
## 66  C00020        C00042
## 67  C00020        C00051
## 68  C00020        C00097
## 69  C00020        C00245
## 70  C00010        C00022
## 71  C00022        C00013
## 72  C00022        C00015
## 73  C00022        C00019
## 74  C00020        C00022
## 75  C00022        C00035
## 76  C00022        C00073
## 77  C00022        C00097
## 78  C00022        C00149
## 79  C00022        C00186
## 80  C00025        C00013
## 81  C00020        C00025
## 82  C00022        C00025
## 83  C00025        C00035
## 84  C00025        C00042
## 85  C00025        C00051
## 86  C00025        C00073
## 87  C00025        C00079
## 88  C00025        C00097
## 89  C00025        C00148
## 90  C00025        C00295
## 91  C00025        C00407
## 92  C00025        C00624
## 93  C00025        C04376
## 94  C00029        C00105
## 95  C00029        C00167
## 96  C00013        C00035
## 97  C00020        C00035
## 98  C00035        C00042
## 99  C00035        C00055
## 100 C00035        C00096
## 101 C00035        C00105
## 102 C00042        C00004
## 103 C00097        C00042
## 104 C00042        C00122
## 105 C00148        C00042
## 106 C00042        C03793
## 107 C00043        C00004
## 108 C00043        C00105
## 109 C00047        C00004
## 110 C00013        C00047
## 111 C00020        C00047
## 112 C00025        C00047
## 113 C00047        C00042
## 114 C00062        C00047
## 115 C00047        C00073
## 116 C00047        C00078
## 117 C00047        C00079
## 118 C00097        C00047
## 119 C00148        C00047
## 120 C00047        C00407
## 121 C00051        C00097
## 122 C00051        C01419
## 123 C00093        C00055
## 124 C00097        C00055
## 125 C00055        C00307
## 126 C00055        C00570
## 127 C00010        C00062
## 128 C00062        C00013
## 129 C00020        C00062
## 130 C00062        C00042
## 131 C00062        C00073
## 132 C00062        C00078
## 133 C00062        C00079
## 134 C00062        C00097
## 135 C00062        C00148
## 136 C00062        C00407
## 137 C00062        C03406
## 138 C00020        C00073
## 139 C00073        C00078
## 140 C00073        C00079
## 141 C00097        C00073
## 142 C00148        C00073
## 143 C00073        C00407
## 144 C00078        C00004
## 145 C00013        C00078
## 146 C00020        C00078
## 147 C00022        C00078
## 148 C00025        C00078
## 149 C00079        C00078
## 150 C00097        C00078
## 151 C00148        C00078
## 152 C00407        C00078
## 153 C00079        C00004
## 154 C00010        C00079
## 155 C00013        C00079
## 156 C00020        C00079
## 157 C00097        C00079
## 158 C00148        C00079
## 159 C00407        C00079
## 160 C00093        C00013
## 161 C00093        C00015
## 162 C00093        C00111
## 163 C00093        C00670
## 164 C00096        C00004
## 165 C00097        C00148
## 166 C00097        C00407
## 167 C00097        C01419
## 168 C00097        C02291
## 169 C00042        C00105
## 170 C00106        C00105
## 171 C00167        C00105
## 172 C00105        C00190
## 173 C00429        C00106
## 174 C00013        C00122
## 175 C00020        C00122
## 176 C00022        C00122
## 177 C00062        C00122
## 178 C00149        C00122
## 179 C00295        C00122
## 180 C00122        C03406
## 181 C00148        C00013
## 182 C00020        C00148
## 183 C00148        C00407
## 184 C00149        C00042
## 185 C00149        C00186
## 186 C00167        C00190
## 187 C00073        C00170
## 188 C00042        C00178
## 189 C00178        C00906
## 190 C00385        C00242
## 191 C00025        C00245
## 192 C00245        C00042
## 193 C00097        C00245
## 194 C00267        C00015
## 195 C00020        C00267
## 196 C00093        C00307
## 197 C00588        C00307
## 198 C00385        C00042
## 199 C00385        C01762
## 200 C00407        C00004
## 201 C00013        C00407
## 202 C00020        C00407
## 203 C00407        C00042
## 204 C00111        C00447
## 205 C05382        C00447
## 206 C00245        C00519
## 207 C00588        C00670
## 208 C00588        C13482
## 209 C00035        C00788
## 210 C00906        C00004
## 211 C00013        C01210
## 212 C01210        C13482
## 213 C00022        C02291
## 214 C02630        C00004
## 215 C00047        C03793
## 216 C00111        C05378
## 217 C00013        C05385
## 218 C00167        C05385
## 219 C00020        C05512
## 220 C00055        C05673
## 221 C00055        C05674
## 222 C00020        C06192
## 223 C00004          GLDC
## 224 C00004          GPD1
## 225 C00004         GPD1L
## 226 C00004          H6PD
## 227 C00013         ACACB
## 228 C00013         ADCY5
## 229 C00013          NPR1
## 230 C00013         PDSS1
## 231 C00013          POLQ
## 232 C00015          FMOD
## 233 C00015       GALNT15
## 234 C00015          NME1
## 235 C00015           OGN
## 236 C00015         PDIA4
## 237 C00015          RRM2
## 238 C00019        DNMT3B
## 239 C00019     EEF1AKMT4
## 240 C00019          EZH2
## 241 C00019          TRMO
## 242 C00020         ACACB
## 243 C00020           AK7
## 244 C00020         PDE1A
## 245 C00020         PDE2A
## 246 C00025         CTPS1
## 247 C00025           GGH
## 248 C00025       NAALAD2
## 249 C00025         PSAT1
## 250 C00025       SLC17A7
## 251 C00035          NME1
## 252 C00035       RAPGEF3
## 253 C00035          RRM2
## 254 C00035      SECISBP2
## 255 C00035           TXN
## 256 C00043          FMOD
## 257 C00043           OGN
## 258 C00047        SLC7A2
## 259 C00055           AK7
## 260 C00055          FMOD
## 261 C00055           OGN
## 262 C00062        SLC7A2
## 263 C00073     EEF1AKMT4
## 264 C00073          TRMO
## 265 C00073           TXN
## 266 C00079        SLC7A2
## 267 C00093          GPD1
## 268 C00093         GPD1L
## 269 C00111          GPD1
## 270 C00111         GPD1L
## 271 C00153        TIPARP
## 272 C00167         PDIA4
## 273 C00365           TK1
## 274 C00365           TK2
## 275 C00670 JMJD7-PLA2G4B
## 276 C00788          MAOA
## 277 C03793       TRABD2B
## 278 C05382           TKT
## 279 C05581          MAOA
# dev.off()
# write.table(a,"result_v0131/subnetwork_interested_edge.txt",quote=F,row.names=F,sep="\t")

Subnetwork extraction using correlation

# png("result_v0131/subnetwork_correlation.png",width = 8, height = 7, units = 'in', res = 200)
## extract the correlation subnetwork
a <- pNetCor(meta_dat, gene_dat, cor_threshold = 0.95)
## [1] "Starting correlation calculation"
## [1] "If the data is large, it will take some minutes"

a
## $result
##         name1    name2 cor_result            p      type1      type2
## 1      C05100   C00408  0.9938503 0.000000e+00 metabolite metabolite
## 2      C00408   C00064  0.9938415 0.000000e+00 metabolite metabolite
## 3     C06178    C00047  0.9980774 0.000000e+00 metabolite metabolite
## 4      C02220   C01042  0.9745498 0.000000e+00 metabolite metabolite
## 5      C00881   C00380  0.9543875 0.000000e+00 metabolite metabolite
## 6      C02630   C00490  0.9519425 2.220446e-16 metabolite metabolite
## 7      C00632   C00299  0.9843097 0.000000e+00 metabolite metabolite
## 8      C05100   C00064  0.9999999 0.000000e+00 metabolite metabolite
## 9      C05635   C00328  0.9997317 0.000000e+00 metabolite metabolite
## 10     C18170   C00148  0.9999757 0.000000e+00 metabolite metabolite
## 11     C06192   C00096  0.9519796 2.220446e-16 metabolite metabolite
## 12     C06192   C00190  0.9570487 0.000000e+00 metabolite metabolite
## 13     C02045   C00267  0.9521105 2.220446e-16 metabolite metabolite
## 14     C00075   C00002  0.9575343 0.000000e+00 metabolite metabolite
## 15     C05851   C00180  0.9991263 0.000000e+00 metabolite metabolite
## 16     C00180   C00079  0.9543253 0.000000e+00 metabolite metabolite
## 17     C00180   C00082  0.9968227 0.000000e+00 metabolite metabolite
## 18     C00601   C00180  0.9911016 0.000000e+00 metabolite metabolite
## 19     C00475   C00120  0.9808235 0.000000e+00 metabolite metabolite
## 20     C00570   C00307  0.9655488 0.000000e+00 metabolite metabolite
## 21     C05851   C00079  0.9554133 0.000000e+00 metabolite metabolite
## 22     C05851   C00082  0.9963136 0.000000e+00 metabolite metabolite
## 23     C05851   C00601  0.9919686 0.000000e+00 metabolite metabolite
## 24     C00149   C00122  0.9960786 0.000000e+00 metabolite metabolite
## 25     C00035   C00015  0.9683562 0.000000e+00 metabolite metabolite
## 26     C00190   C00096  0.9505742 4.440892e-16 metabolite metabolite
## 27     C00096   C00043  0.9574429 0.000000e+00 metabolite metabolite
## 28     C01419   C00051  0.9698552 0.000000e+00 metabolite metabolite
## 29    C00144    C00105  0.9568950 0.000000e+00 metabolite metabolite
## 30    C00387    C00294  0.9619177 0.000000e+00 metabolite metabolite
## 31    C05938    C00025  0.9999788 0.000000e+00 metabolite metabolite
## 32     C02642   C00152  0.9999987 0.000000e+00 metabolite metabolite
## 33     C00407   C00079  0.9825118 0.000000e+00 metabolite metabolite
## 34     C00082   C00079  0.9524477 0.000000e+00 metabolite metabolite
## 35     C00601   C00082  0.9902250 0.000000e+00 metabolite metabolite
## 36     C00190   C00043  0.9645821 0.000000e+00 metabolite metabolite
## 37      PDE2A    ABCA8  0.9521911 2.220446e-14       gene       gene
## 38     ACVRL1    ABCC9  0.9611130 0.000000e+00       gene       gene
## 39      KCNJ8    ABCC9  0.9718499 0.000000e+00       gene       gene
## 40      MECOM    ABCC9  0.9695464 0.000000e+00       gene       gene
## 41      PDE1A    ABCC9  0.9599045 2.220446e-16       gene       gene
## 42      PRKG1    ABCC9  0.9612267 0.000000e+00       gene       gene
## 43      PTPRB    ABCC9  0.9703811 0.000000e+00       gene       gene
## 44      S1PR1    ABCC9  0.9528181 1.776357e-15       gene       gene
## 45        TEK    ABCC9  0.9596725 2.220446e-16       gene       gene
## 46       AKT3   ACVRL1  0.9512478 2.220446e-16       gene       gene
## 47        DCN   ACVRL1  0.9641382 0.000000e+00       gene       gene
## 48      GNG11   ACVRL1  0.9702326 0.000000e+00       gene       gene
## 49       GNG2   ACVRL1  0.9548637 2.220446e-16       gene       gene
## 50   HSD17B11   ACVRL1  0.9510524 2.664535e-15       gene       gene
## 51      PRKG1   ACVRL1  0.9513762 2.220446e-16       gene       gene
## 52      PTPRB   ACVRL1  0.9684628 0.000000e+00       gene       gene
## 53      S1PR1   ACVRL1  0.9702329 0.000000e+00       gene       gene
## 54        TEK   ACVRL1  0.9536665 0.000000e+00       gene       gene
## 55       AOC3   ADRA2A  0.9529137 5.329071e-15       gene       gene
## 56        DCN   ADRA2A  0.9510561 8.881784e-15       gene       gene
## 57      GNG11   ADRA2A  0.9558340 2.442491e-15       gene       gene
## 58      PDE1A   ADRA2A  0.9665477 2.220446e-16       gene       gene
## 59     PTGER3   ADRA2A  0.9515055 7.993606e-15       gene       gene
## 60      PTPRB   ADRA2A  0.9591008 8.881784e-16       gene       gene
## 61      S1PR1   ADRA2A  0.9674976 0.000000e+00       gene       gene
## 62        TEK   ADRA2A  0.9658895 0.000000e+00       gene       gene
## 63     AKR1C2   AKR1C1  0.9508092 2.220446e-16       gene       gene
## 64  EEF1AKMT4     ALG3  0.9617165 0.000000e+00       gene       gene
## 65    SLCO2B1  ALOX5AP  0.9540727 3.996803e-15       gene       gene
## 66    ST8SIA4  ALOX5AP  0.9622097 4.440892e-16       gene       gene
## 67       TPP1  ALOX5AP  0.9572490 1.554312e-15       gene       gene
## 68       FMOD     AOC3  0.9505416 4.440892e-16       gene       gene
## 69      MECOM     AOC3  0.9591528 0.000000e+00       gene       gene
## 70      PDE1A     AOC3  0.9612698 0.000000e+00       gene       gene
## 71      PTPRB     AOC3  0.9685499 0.000000e+00       gene       gene
## 72      S1PR1     AOC3  0.9608990 0.000000e+00       gene       gene
## 73        TEK     AOC3  0.9504502 4.440892e-16       gene       gene
## 74      PLIN1     AQP7  0.9645697 1.252332e-13       gene       gene
## 75      PDE2A     ASPA  0.9581644 1.332268e-15       gene       gene
## 76      NUDT5  ATP5F1C  0.9537685 0.000000e+00       gene       gene
## 77       BUB1    AURKA  0.9691365 0.000000e+00       gene       gene
## 78      BUB1B    AURKA  0.9542584 0.000000e+00       gene       gene
## 79     CDC25C    AURKA  0.9757903 0.000000e+00       gene       gene
## 80       CDK1    AURKA  0.9615361 0.000000e+00       gene       gene
## 81       MELK    AURKA  0.9553172 0.000000e+00       gene       gene
## 82      BUB1B    AURKB  0.9608279 0.000000e+00       gene       gene
## 83       MELK    AURKB  0.9569659 0.000000e+00       gene       gene
## 84        TTK    AURKB  0.9586561 0.000000e+00       gene       gene
## 85     PDGFRB      AXL  0.9507983 2.220446e-16       gene       gene
## 86     INPP5D      BTK  0.9568919 0.000000e+00       gene       gene
## 87     PIK3R5      BTK  0.9535169 0.000000e+00       gene       gene
## 88      PTPN7      BTK  0.9666415 0.000000e+00       gene       gene
## 89      PTPRC      BTK  0.9606287 0.000000e+00       gene       gene
## 90    ST8SIA4      BTK  0.9536160 1.332268e-15       gene       gene
## 91    TNFAIP8      BTK  0.9595595 0.000000e+00       gene       gene
## 92      BUB1B     BUB1  0.9624841 0.000000e+00       gene       gene
## 93     CDC25A     BUB1  0.9551371 0.000000e+00       gene       gene
## 94     CDC25C     BUB1  0.9711373 0.000000e+00       gene       gene
## 95       CDK1     BUB1  0.9568210 0.000000e+00       gene       gene
## 96       HMMR     BUB1  0.9667073 0.000000e+00       gene       gene
## 97       MELK     BUB1  0.9703135 0.000000e+00       gene       gene
## 98       NEK2     BUB1  0.9587695 0.000000e+00       gene       gene
## 99       PLK1     BUB1  0.9691279 0.000000e+00       gene       gene
## 100       TTK     BUB1  0.9608439 0.000000e+00       gene       gene
## 101    CDC25C    BUB1B  0.9627357 0.000000e+00       gene       gene
## 102      MELK    BUB1B  0.9666373 0.000000e+00       gene       gene
## 103       TTK    BUB1B  0.9675330 0.000000e+00       gene       gene
## 104      CDK1   CDC25C  0.9536671 0.000000e+00       gene       gene
## 105      MELK   CDC25C  0.9674048 0.000000e+00       gene       gene
## 106      EZH2     CDK1  0.9532571 0.000000e+00       gene       gene
## 107      NEK2     CDK1  0.9555746 0.000000e+00       gene       gene
## 108     CIDEC    CIDEA  0.9631204 4.005130e-11       gene       gene
## 109      GPD1    CIDEC  0.9552145 4.867884e-12       gene       gene
## 110      LIPE    CIDEC  0.9813491 8.881784e-16       gene       gene
## 111     PLIN1    CIDEC  0.9735118 2.753353e-14       gene       gene
## 112      CYBB    CSF1R  0.9642722 0.000000e+00       gene       gene
## 113    PIK3CG     CYBB  0.9531043 4.440892e-16       gene       gene
## 114    PIK3R5     CYBB  0.9534256 0.000000e+00       gene       gene
## 115     PTPRC     CYBB  0.9618130 0.000000e+00       gene       gene
## 116     PTPRO     CYBB  0.9641765 0.000000e+00       gene       gene
## 117    SLC7A7     CYBB  0.9685405 0.000000e+00       gene       gene
## 118     GNG11      DCN  0.9606695 4.440892e-16       gene       gene
## 119     PRKG1      DCN  0.9512348 2.664535e-15       gene       gene
## 120       PBK    ESCO2  0.9611330 0.000000e+00       gene       gene
## 121     FOLR2    F13A1  0.9539469 1.614264e-13       gene       gene
## 122     PRKG1     FMOD  0.9508807 2.220446e-16       gene       gene
## 123    PTGER3     FMOD  0.9542998 0.000000e+00       gene       gene
## 124      TPI1    GAPDH  0.9594477 0.000000e+00       gene       gene
## 125     MSRB3   GLT8D2  0.9703943 0.000000e+00       gene       gene
## 126     KCNJ8    GNG11  0.9530706 5.329071e-15       gene       gene
## 127     MECOM    GNG11  0.9554520 2.664535e-15       gene       gene
## 128     PDE1A    GNG11  0.9559116 8.215650e-15       gene       gene
## 129     PRKG1    GNG11  0.9557364 2.442491e-15       gene       gene
## 130     PTPRB    GNG11  0.9660518 0.000000e+00       gene       gene
## 131     S1PR1    GNG11  0.9631806 2.220446e-16       gene       gene
## 132       TEK    GNG11  0.9615761 4.440892e-16       gene       gene
## 133  HSD17B11     GNG2  0.9527556 1.776357e-15       gene       gene
## 134    PTGER4     GNG2  0.9682377 0.000000e+00       gene       gene
## 135    INPP5D     HCST  0.9547074 8.881784e-16       gene       gene
## 136    PIK3R5     HCST  0.9567257 4.440892e-16       gene       gene
## 137    PTGER4 HSD17B11  0.9591484 8.881784e-16       gene       gene
## 138    PIK3CG   INPP5D  0.9659720 0.000000e+00       gene       gene
## 139    PIK3R5   INPP5D  0.9597248 0.000000e+00       gene       gene
## 140    PTGER4   INPP5D  0.9565467 0.000000e+00       gene       gene
## 141     PTPN7   INPP5D  0.9599870 0.000000e+00       gene       gene
## 142     PTPRC   INPP5D  0.9698189 0.000000e+00       gene       gene
## 143     PTPRC     JAK3  0.9541770 0.000000e+00       gene       gene
## 144     PDE1B    KCNJ8  0.9535535 0.000000e+00       gene       gene
## 145     PRKG1    KCNJ8  0.9616117 0.000000e+00       gene       gene
## 146     PDE2A       KL  0.9570194 1.776357e-15       gene       gene
## 147     PRKCB      LCK  0.9662961 0.000000e+00       gene       gene
## 148   UBASH3A      LCK  0.9530990 6.696865e-13       gene       gene
## 149     ZAP70      LCK  0.9573878 0.000000e+00       gene       gene
## 150     PLIN1     LIPE  0.9628021 0.000000e+00       gene       gene
## 151    PTGER4    LRRK2  0.9694866 0.000000e+00       gene       gene
## 152     PTPN7   MAP4K1  0.9751826 0.000000e+00       gene       gene
## 153     ZAP70   MAP4K1  0.9612888 0.000000e+00       gene       gene
## 154     PDE1A    MECOM  0.9670994 0.000000e+00       gene       gene
## 155     PRKG1    MECOM  0.9620268 0.000000e+00       gene       gene
## 156     PTPRB    MECOM  0.9766969 0.000000e+00       gene       gene
## 157     S1PR1    MECOM  0.9647745 0.000000e+00       gene       gene
## 158       TEK    MECOM  0.9656955 0.000000e+00       gene       gene
## 159       TTK     MELK  0.9677622 0.000000e+00       gene       gene
## 160      OAS2     OAS1  0.9809053 0.000000e+00       gene       gene
## 161      OAS3     OAS1  0.9658351 0.000000e+00       gene       gene
## 162    PARP12     OAS1  0.9543994 0.000000e+00       gene       gene
## 163      OAS3     OAS2  0.9700924 0.000000e+00       gene       gene
## 164    PARP14   PARP12  0.9591643 0.000000e+00       gene       gene
## 165     PARP9   PARP14  0.9616310 0.000000e+00       gene       gene
## 166     PTPRC    PARP8  0.9618607 0.000000e+00       gene       gene
## 167     PTPRB    PDE1A  0.9657455 0.000000e+00       gene       gene
## 168     S1PR1    PDE1A  0.9677138 0.000000e+00       gene       gene
## 169       TEK    PDE1A  0.9675572 0.000000e+00       gene       gene
## 170    PTGER4   PIK3CG  0.9533792 1.332268e-15       gene       gene
## 171     PTPRC   PIK3CG  0.9611947 0.000000e+00       gene       gene
## 172     PTPN7   PIK3R5  0.9506781 4.440892e-16       gene       gene
## 173     PTPRC   PIK3R5  0.9788964 0.000000e+00       gene       gene
## 174    SLC7A7   PIK3R5  0.9557844 0.000000e+00       gene       gene
## 175   ST8SIA4   PIK3R5  0.9706706 0.000000e+00       gene       gene
## 176     PTPRB    PLCL1  0.9550180 2.220446e-16       gene       gene
## 177      RDH5    PLIN1  0.9500174 1.110223e-15       gene       gene
## 178      PLK4     PLK1  0.9668259 0.000000e+00       gene       gene
## 179     PROS1    PLPP1  0.9513904 2.442491e-15       gene       gene
## 180     PTPRC    PRKCB  0.9511774 8.881784e-16       gene       gene
## 181     PTPRB    PRKG1  0.9622456 0.000000e+00       gene       gene
## 182       TEK    PRKG1  0.9512029 2.220446e-16       gene       gene
## 183     PTPRC    PTPN7  0.9649503 0.000000e+00       gene       gene
## 184   TNFAIP8    PTPN7  0.9550097 0.000000e+00       gene       gene
## 185     ZAP70    PTPN7  0.9506275 4.440892e-16       gene       gene
## 186     S1PR1    PTPRB  0.9827064 0.000000e+00       gene       gene
## 187       TEK    PTPRB  0.9729261 0.000000e+00       gene       gene
## 188   ST8SIA4    PTPRC  0.9616076 0.000000e+00       gene       gene
## 189    SLC7A7    PTPRO  0.9599202 2.220446e-16       gene       gene
## 190   ST8SIA4    PTPRO  0.9554691 8.881784e-16       gene       gene
## 191       TPO  RAPGEF3  0.9506282 8.881784e-16       gene       gene
## 192       TEK    S1PR1  0.9775779 0.000000e+00       gene       gene
## 193    SETDB2  SEPSECS  0.9587409 0.000000e+00       gene       gene
## 
## $p
## NULL
# dev.off()

# write.table(
#   a$result,
#   "result_v0131/subnetwork_correlation.txt",
#   quote = F,
#   row.names = F,
#   sep = "\t"
# )