Feature selection using XGBoost
Examples
library(dplyr)
meta_dat1 <- t(meta_dat) %>%
as.data.frame() %>%
dplyr::mutate(group=group)
result_ML_xgboost <- ML_xgboost(meta_dat1)
#> [1] train-rmse:0.361110 test-rmse:0.472223
#> [2] train-rmse:0.260802 test-rmse:0.476949
#> [3] train-rmse:0.188357 test-rmse:0.493187
#> [4] train-rmse:0.136036 test-rmse:0.511018
#> [5] train-rmse:0.098249 test-rmse:0.526761
#> [6] train-rmse:0.070959 test-rmse:0.539494
#> [7] train-rmse:0.051248 test-rmse:0.549350
#> [8] train-rmse:0.037013 test-rmse:0.556795
#> [9] train-rmse:0.026732 test-rmse:0.562335
#> [10] train-rmse:0.019307 test-rmse:0.566419
#> [11] train-rmse:0.013944 test-rmse:0.569410
#> [12] train-rmse:0.010071 test-rmse:0.571592
#> [13] train-rmse:0.007274 test-rmse:0.573179
#> [14] train-rmse:0.005253 test-rmse:0.574332
#> [15] train-rmse:0.003794 test-rmse:0.575167
#> [16] train-rmse:0.002740 test-rmse:0.575772
#> [17] train-rmse:0.001979 test-rmse:0.576209
#> [18] train-rmse:0.001430 test-rmse:0.576526
#> [19] train-rmse:0.001032 test-rmse:0.576754
#> [20] train-rmse:0.000746 test-rmse:0.576920
#> [21] train-rmse:0.000539 test-rmse:0.577039
#> [22] train-rmse:0.000389 test-rmse:0.577126
#> [23] train-rmse:0.000281 test-rmse:0.577188
#> [24] train-rmse:0.000203 test-rmse:0.577233
#> [25] train-rmse:0.000203 test-rmse:0.577233
#> [26] train-rmse:0.000203 test-rmse:0.577233
#> [27] train-rmse:0.000203 test-rmse:0.577233
#> [28] train-rmse:0.000203 test-rmse:0.577233
#> [29] train-rmse:0.000203 test-rmse:0.577233
#> [30] train-rmse:0.000203 test-rmse:0.577233
#> [31] train-rmse:0.000203 test-rmse:0.577233
#> [32] train-rmse:0.000203 test-rmse:0.577233
#> [33] train-rmse:0.000203 test-rmse:0.577233
#> [34] train-rmse:0.000203 test-rmse:0.577233
#> [35] train-rmse:0.000203 test-rmse:0.577233
#> [36] train-rmse:0.000203 test-rmse:0.577233
#> [37] train-rmse:0.000203 test-rmse:0.577233
#> [38] train-rmse:0.000203 test-rmse:0.577233
#> [39] train-rmse:0.000203 test-rmse:0.577233
#> [40] train-rmse:0.000203 test-rmse:0.577233
#> [41] train-rmse:0.000203 test-rmse:0.577233
#> [42] train-rmse:0.000203 test-rmse:0.577233
#> [43] train-rmse:0.000203 test-rmse:0.577233
#> [44] train-rmse:0.000203 test-rmse:0.577233
#> [45] train-rmse:0.000203 test-rmse:0.577233
#> [46] train-rmse:0.000203 test-rmse:0.577233
#> [47] train-rmse:0.000203 test-rmse:0.577233
#> [48] train-rmse:0.000203 test-rmse:0.577233
#> [49] train-rmse:0.000203 test-rmse:0.577233
#> [50] train-rmse:0.000203 test-rmse:0.577233
#> [51] train-rmse:0.000203 test-rmse:0.577233
#> [52] train-rmse:0.000203 test-rmse:0.577233
#> [53] train-rmse:0.000203 test-rmse:0.577233
#> [54] train-rmse:0.000203 test-rmse:0.577233
#> [55] train-rmse:0.000203 test-rmse:0.577233
#> [56] train-rmse:0.000203 test-rmse:0.577233
#> [57] train-rmse:0.000203 test-rmse:0.577233
#> [58] train-rmse:0.000203 test-rmse:0.577233
#> [59] train-rmse:0.000203 test-rmse:0.577233
#> [60] train-rmse:0.000203 test-rmse:0.577233
#> [61] train-rmse:0.000203 test-rmse:0.577233
#> [62] train-rmse:0.000203 test-rmse:0.577233
#> [63] train-rmse:0.000203 test-rmse:0.577233
#> [64] train-rmse:0.000203 test-rmse:0.577233
#> [65] train-rmse:0.000203 test-rmse:0.577233
#> [66] train-rmse:0.000203 test-rmse:0.577233
#> [67] train-rmse:0.000203 test-rmse:0.577233
#> [68] train-rmse:0.000203 test-rmse:0.577233
#> [69] train-rmse:0.000203 test-rmse:0.577233
#> [70] train-rmse:0.000203 test-rmse:0.577233
result_ML_xgboost$p
result_ML_xgboost$feature_result
#> Feature Gain Cover Frequency Importance
#> <fctr> <num> <num> <num> <num>
#> 1: C00267 1 1 1 1